「検索アルゴリズム改善における機械学習の活用 〜MLOpsについて〜 - ぐるなびをちょっと良くするエンジニアブログ」

はじめに こんにちは。 CX部門 データ・AI戦略室 データ戦略Gの田中です。 ぐるなびには2018年に新卒として入社し、レコメンドエンジンの開発や在庫・予約関連のデータ分析等に携わってきました。 現在は主に検索結果の並び順アルゴリズムの改善を行っています。 私たちのチームではアルゴリズム自体の改善に伴い、MLOps(機械学習の運用改善)にも取り組みました。 今回は、 MLOpsとは どうやって導入したか 導入で何が得られたか についてお話ししていきたいと思います。

はじめに こんにちは。 CX部門 データ・AI戦略室 データ戦略Gの田中です。 ぐるなびには2018年に新卒として入社し、レコメンドエンジンの開発や在庫・予約関連のデータ分析等に携わってきました。 現在は主に検索結果の並び順アルゴリズムの改善を行っています。 私たちのチームではアルゴリズム自体の改善に伴い、MLOps(機械学習の運用改善)にも取り組みました。 今回は、 MLOpsとは どうやって導入したか 導入で何が得られたか についてお話ししていきたいと思います。

developers.gnavi.co.jp

Webページ

コンテンツ文字数:0 文字

見出し数(H2/H3タグ):0 個

閲覧数:84 件

2022-04-26 11:00:59

オリジナルページを開く